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Abstract—Routing is an essential operation in wireless sensor
networks. Most existing routing protocols are designed for
homogeneous sensor networks, where all sensor nodes have
the same capabilities in terms of communication, computation,
energy supply, and other aspects. Recent studies [10][20] show
that a homogeneous sensor network has a poor fundamental
performance limit. To achieve better performance, we adopt a
Heterogeneous Sensor Network (HSN) model. In this paper, we
present an efficient NEar-optiMal rOuting (NEMO) protocol for
HSNs. We evaluate the performance of NEMO through extensive
simulation experiments. Our results show that NEMO can find
near-optimal routes in an HSN and has very small overhead,
and NEMO performs much better than any other HSN routing
protocols.
Keywords: Heterogeneous sensor networks; routing; energy effi-
ciency; routing protocols; sensor nets; embedded systems.

I. INTRODUCTION

The primary functionality of wireless sensor networks is to
sense the environment and transmit the acquired information
to a base station (BS) for further processing. Thus, routing is a
fundamental and very important operation in sensor networks.
Routing in homogeneous sensor networks has been well stud-
ied, and a number of routing protocols have been proposed,
such as LEACH [12], Directed Diffusion [14], TTDD [22],
and Mesh [23]. However, a homogeneous sensor network,
with the same capabilities, suffers from a poor fundamental
limit and performance. Several literatures (e.g., [10] and [20])
have demonstrated its performance bottleneck. To achieve
better performance, we adopt a realistic Heterogeneous Sensor
Network (HSN) model, which includes different physical types
of sensor nodes, and some nodes are more powerful than
other nodes. Several deployed sensor network systems (e.g.,
[18]) utilized different physical types of sensor nodes and
followed a HSN design. In [11], Girod et al. considered an
HSN consisting of small MICA2 sensor nodes, as well as
more powerful Personal Digital Assistants (PDAs). In [21],
Yarvis et al. studied some design issues in a special type of
HSN, where some sensor nodes are line powered and have
unlimited energy supply, and all other nodes are just one-
hop away from the line powered nodes. In [17], Mhatre et
al. studied minimum node densities and energies in HSNs to
guarantee a network lifetime. In [7], Du et al. designed an
efficient routing protocol, Heterogeneous Sensor Relay (HSR),
for HSNs. To the best of our knowledge, it is one of the most
effective routing schemes designed for HSNs. However, most
previous approaches are not distributed and could cause a large
time and message complexity.

In this paper, we present an efficient distributed routing
protocol- NEar-optiMal rOuting (NEMO)-for HSNs. The (near)

optimal routing in this paper refers to (near) minimum-energy-
consumption routing. The NEMO protocol achieves impressive
performance by utilizing more powerful H-sensors in an HSN.
Simulation results show that NEMO achieves near-minimum
energy consumption and has much less time and message
complexity than the centralized optimal solution.

Our contributions in this work are four-fold: First, the
proposed NEMO protocol can find near-optimal routes in
terms of energy consumption, and has much better energy
consumption performance than the previous best HSN routing
protocol [7]. Second, compared with the traditional shortest
path algorithm, the NEMO protocol can significantly reduce
the communication overhead. Third, we propose a novel
and effective distributed shortest path algorithm for resource-
limited sensor networks. Fourth, we study a new problem, the
Weighted Energy-Aware Routing (WEAR), in HSNs, which
considers the fact that an H-sensor has much more energy
supply than an L-sensor.

The rest of the paper is organized as follows: In Section II,
we present the problem statement. The technical details of the
NEMO protocol is presented in Section III, which is followed
by the simulation experiments and results in Section IV. We
conclude the paper in Section V.

II. PROBLEM STATEMENT

One fundamental research issue in sensor networks is energy
efficient routing, which is due to the limited energy of sensor
nodes. Our current HSN model consists of a small number
of powerful H-sensors and a large number of L-sensors. Both
H-sensors and L-sensors are powered by batteries and have
limited energy and communication capability. Compared to
an L-sensor, an H-sensor has a much larger transmission
range (power), better computation capability, larger storage,
and more energy supply. For the simplicity of discussion, we
assume that each H-sensor can communicate directly with its
neighbor H-sensors (if not, then relay via L-sensors can be
used). All H-sensors form a backbone in an HSN. After a
cluster formation, an HSN is divided into multiple clusters,
and H-sensors serve as cluster heads.

We adopt the first order radio model presented in [12].
A sensor consumes ϵelec=50 nJ/bit to run the transmitter or
receiver circuitry and ϵamp=100 pJ/bit/m2 for the transmitter
amplifier. Thus, the energy consumed by a sensor then receiv-
ing a 1-bit data packet is given by Rx = ϵelec, while the energy
consumed by sensor i in transmitting a data packet to sensor j
is given by Tx = (ϵelec+ϵamp ·d2i,j), where di,j is the distance
between nodes i and j.



In this paper, we consider minimizing the total energy
consumption of transmissions from L-sensors to the BS.

Definition 1 (Path Energy Consumption): Denote the en-
ergy consumption of relaying a packet by an L-sensor and
an H-sensor as el and eh, respectively. The path energy
consumption of Pl, a path from an L-sensor l to the BS, is:
EC(Pl) =

∑
li∈Pl

eli +
∑

hi∈Pl

ehi 2

Definition 2 (Minimum Energy Routing in HSNs): Let Π
represent the set of all possible paths, L be the set of all
L-sensors, l be an L-sensor, and Pl be a path from l to the
BS. Minimum energy routing in HSNs seeks paths for all
L-sensors with the objective:

min
Pl∈Π

∑
l∈L

EC(Pl).

In other words, the total energy consumption from all L-
sensors to the BS should be minimized. 2

III. NEAR-MINIMUM-ENERGY ROUTING

To minimize the total routing energy, we aim to find
the minimum energy path from each L-sensor to the BS.
However, in large wireless sensor networks, finding shortest
paths for a large number of L-sensors in a distributed manner
could cause substantial communication (message) overhead
and hence, cause significant energy consumption of sensor
nodes. In this paper, we present the NEMO protocol, which
is listed in Algorithm 1. Adopting the two-tiered architecture
in [7], NEMO finds a near-minimum-total-energy route for an
L-sensor to the BS in the network and incurs small overhead.
We first introduce a concept which helps NEMO to reduce the
time and message complexity.

Definition 3 (Eligible H-sensor): Given an energy con-
sumption threshold τ , an eligible H-sensor for an L-sensor
l is an H-sensor h such that there exists a path l → h → BS,
whose energy consumption is no more than τ . 2

The purpose of using eligible H-sensors is to reduce the
overhead of route discovery. For an L-sensor l, computing
paths from l to every H-sensor causes large overheads. Instead,
we only compute paths from l to eligible H-sensors. In Section
III, we will prove that a shortest path from l to the BS must
go through one of the eligible H-sensors. Eligible H-sensors
can significantly reduce message complexity (for example, less
communications and control packets) and hence, cause much
less energy consumptions on sensor nodes in an HSN.

Algorithm 1 NEMO(G)
1: for each H-sensor h in G do
2: Find a shortest path from h to BS;
3: end for
4: for each L-sensor l in G do
5: Find eligible H-sensors for l;
6: Calculate a shortest path from l to each eligible H-sensor;
7: end for
8: Find the route from each L-sensor l to BS with the minimum

total energy consumption.

First, each H-sensor computes a path to the BS with
minimum energy consumption (denoted as E1). Next, each
L-sensor l computes a path to every eligible H-sensor and the
corresponding energy consumption (denoted as E2). Then, an
L-sensor l finds the path that has the minimal E1+E2 as the

path from l to the BS. In the next Section, we discuss the
details of our novel distributed shortest path algorithm for the
NEMO protocol.

A. Determining Eligible H-sensors

In the HSR routing protocol [7], each L-sensor chooses
the closest H-sensor for routing, i.e., the H-sensor that has
the minimum Euclidian distance to the L-sensor. It is easy to
see that HSR is not optimal because there is a considerable
difference between the Euclidian distance and the actual
energy consumption, which is discussed in Section II. One
major contribution in this work is that we propose a theoretical
analysis of choosing eligible H-sensors. By only using the
Euclidian distance between an L-sensor and an H-sensor, we
have the following lower bound of energy consumption.

Lemma 1: Given an L-sensor l and an H-sensor h, and the
Euclidian distance d between them, the energy for transmis-
sions from l to h is no less than 2d

√
ϵelecϵamp. 2

Proof: Theoretically, the shortest (minimum energy) path
should be on the straight line connecting l and h, as we show
in Fig. 1. For simplicity, we use k1 and k2 to represent ϵelec
and ϵamp, respectively.

Fig. 1. Illustration of the optimal estimate

Denote p1 as the best path along the straight line between l
and h, and p2 as another path from l to h. First, we aim to
calculate the theoretical optimum energy consumption on p1,
which depends on the number of intermediate nodes and the
placement of these nodes. Let x and EC(x) denote the number
of edges on p1 and the energy consumption of the path using
x edges, respectively. There are two cases to consider:
Case 1: Nodes are distributed evenly
With x=1, we have, EC(1) = 2k1 + k2d

2. When x=2:

EC(2) = 2k1 + k2
(
d
2

)2
+ 2k1 + k2

(
d
2

)2
= 4k1 + k2

d2

2

Similarly, we can obtain the expression of EC(x) as follows:

y1 ≡ EC(x) = 2k1x+ k2
d

x

2

(1)

It is easy to see that y1 ≥
√

4 · k1 · x · k2 · d2

x
= 2d

√
k1 · k2.

Therefore, the theoretical minimum for EC(x) is 2d
√
k1k2,

when the number of edges x = d
√

k2

2k1
. Note that the actual

minimum EC(x) may be larger than 2d
√
k1 · k2, since d

√
k2
2k1

may not be an integer.
Case 2: Nodes are not distributed evenly
With one intermediate node, as shown in Fig. 2(a), we have:

EC(2) = 2k1 + k2d21 + 2k1 + k2d22 = 4k1 + k2
(
d21 + d22

)
Extending to the general case, as shown in Fig. 2(b), we have:

y2 ≡ 2 · x · k1 + k2
(
d21 + d22 + . . .+ d2x

)
(2)

Comparing (1) and (2), we have observed that:

y1 = 2k1x+ k2
(d1+d2+...+dx)2

x

y2 = 2k1x+ k2(d
2
1 + d22 + . . .+ d2x)

It is well-known that the quadratic Mean of di (1 ≤ i ≤ x) is
no less than the Arithmetic Mean of them. We have:
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(a) One intermediate node (b) General case

Fig. 2. Illustration of uneven distribution case

d1+d2+...+dx
x

≤
√

d21+d22+...+d2x
x

Therefore, y1 ≤ y2. With the same number of intermediate
nodes, energy consumption is always smaller when nodes that
are distributed evenly. Hence, the theoretical minimum energy
consumption of path p1 is 2d

√
k1k2 = 2d

√
ϵelecϵamp.

Next, we need to compare the energy consumption between
p1 and p2. For any instance of p2 with x edges, it is easy to
construct a corresponding case of p1 that also has x edges.
Because the length of p1 is less than that of p2, we can divide
p1 into x segments, and the length of each segment (edge)
is no more than the corresponding edge on p2. Based on the
formula of energy consumption, it is straightforward to see that
p1 must have less energy consumption than p2. Meanwhile,
as proved above, an instance of p1 with evenly distributed
edges has less energy consumption than an instance of p1 with
unevenly distributed edges. Therefore, the minimum energy
consumption path is on p1, with even distributed edges, which
is no less than 2d

√
ϵelecϵamp.

Based on Lemma 1, we present the following scheme for
selecting eligible H-sensors:

Scheme 1 (Selecting Eligible H-Sensor): Given a threshold
τ , and an H-sensor h, denote ECh as the minimum energy
consumption from h to the BS, which is calculated in Algo-
rithm 1. If (ECh + 2d

√
ϵelecϵamp) ≤ τ , then h is considered as

an eligible H-sensor. 2

Theorem 1: All the eligible H-sensors can be found by
Scheme 1. In other words, any H-sensor that is excluded by
Scheme 1 is not an eligible H-sensor. 2

Proof: For an H-sensor h, assume that the estimated path
energy consumption is higher than the threshold:

(ECh + 2d
√
ϵelecϵamp) > τ

Denote ECl as the actual minimum energy consumption from
an L-sensor l to the H-sensor h. Based on Lemma 1, we have:

ECl ≥ 2d
√
ϵelecϵamp

Consequently, we know (ECh + ECl) > τ .Thus, the actual
path (l → h → BS) consumes more energy than τ . And it is
guaranteed that h is not an eligible H-sensor and should be
excluded. Therefore, all the H-sensors excluded by Scheme 1
are ineligible H-sensors.

It is worth noting that when selecting eligible H-sensors,
Algorithm 1 considers the energy consumptions of both L-
sensor-to-H-sensor path and H-sensor-to-BS path. This is
another advantage over HSR [7], which only considers the
Euclidean distance between an L-sensor and nearby H-sensors.

B. Distributed Shortest Path Algorithms

Finding shortest paths in a distributed manner has been
studied in a number of previous works, e.g., [1], [2], [3], [9].
Some previous works have studied updating shortest paths in
a network with changing topology [6], [13]. However, most

of these algorithms are very complicated and not suitable for
sensor networks, where each sensor node has limited energy,
storage, and computation capability. A simple and popular
solution to this problem, based on the Ford-Bellman method,
was originally introduced in the ARPANET [15] and used
in a large number of networks [19]. Though the algorithm
is simple and has been shown to converge to the correct
distances, this simple scheme suffers from slow convergence
and routing table looping problems [13]. In other words, the
simple algorithm does not promise any performance in terms
of time and message complexity.

In this section, we propose a distributed algorithm, based on
the work in [1], to find shortest paths from a source node to all
other nodes in the network with arbitrary integer edge costs.
On one hand, our algorithm is simple and does not require
strong storage and computation capability. Thus, it is easy to
be implemented in sensor networks. On the other hand, the
algorithm has time and message complexity guarantees, while
the Ford-Bellman method does not [13].

In Algorithm 2, G is the network, and r represents the root
node. Each node has two statuses: black or white. Initially,
every node, except the root node, is white, which means that
it does not have a shortest path to the root node, yet. The root
node is initialized as black. When a node finds its shortest
path to the root node, it will be marked as black. There are
four types of messages; hello, MARK, NOTYET, and NAK,
which will be used on the edges of the network. Our algorithm
works in successive iterations. Each black node will generate
(as the root node) or forward (as a non-root node) a hello
message in each iteration, with the beginning of each iteration
synchronized by the root node r. In Algorithm 2, c(e) and
hello num(e) indicate the cost of edge e and the number of
the hello messages received through e, respectively.

Algorithm 2 DisSPT(G, r)
1: for each node v in G do
2: if (v == r) then
3: mark v as black;
4: else
5: mark v as white;
6: end if
7: end for
8: for each edge e in G do
9: hello num(e) = 0;

10: end for
11: repeat
12: u = r;
13: done = 1;
14: Broadcast(u); // Algorithm 3
15: Wait until receiving responses from all neighbor nodes of u;
16: until (done)

It is worth noting that Algorithm 2 is simple and has a
performance guarantee. The difference between Algorithm 2
and the DFS algorithm in [1] is when each white node receives
a hello message from an edge, it will compare the number of
hello messages received from the edge with this edge’s cost
before response. If the number of the received messages is
equal to the edge cost, this node, which is still white, will mark
itself black, send a MARKED message back to the sender along
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(a) Network G (b) Iteration 1 on G (c) Iteration 2 on G (d) Network G’ (e) Iteration 1 on G’ (f) Iteration 2 on G’

Fig. 3. Graph transformation for Algorithm 2

the edge, and set the sending node as its parent. Otherwise, it
will send a NOTYET message to the sender, which indicates
that the node is not sure, at this point, if the incoming edge is
on the shortest path. We prove the performance of Algorithm
2 in Theorem 2 by using a novel graph transformation scheme
to show the relation between work in [1] and Algorithm 2.

Algorithm 3 Broadcast(u)
1: Node u sends out hello message to each neighbor v;
2: for each neighbor node v do
3: if (v is black) and (u is v’s parent) then
4: Broadcast(v);
5: Wait until received responses from all neighbor nodes;
6: Send information back to u;
7: else
8: if (v is white) then
9: e = (u, v);

10: if (hello num(e) < c(e) - 1) then
11: hello num(e)++;
12: Send message NOTYET to the sending node u;
13: done = 0;
14: else
15: Mark node v as black;
16: Send message MARKED to the sending node u;
17: Make node u as node v’s parent;
18: done = 0;
19: end if
20: end if
21: end if
22: send message NAK to node u;
23: end for

Theorem 2: Algorithm 2 can find shortest paths from the
root node to all other nodes correctly. The communication
complexity and the time complexity are O(C2+(m−n)2),where
C is the summation of all edge costs and n and m are the
number of the node and edges in the network, respectively. 2
Proof: Let us construct a graph transformation to demonstrate
our idea behind Algorithm 2 and the proof. First, we transfer
an original network G in Fig. 3(a) to the network G’ in Fig.
3(d). For each link e with edge cost c(e) in G, it is split into
c(e) edges in G’. For example, link (A,B) in G, with edge
cost 3, is split into 3 edges (A,b1), (b1, b2), and (b2, B) in G’,
which is a network with same edge cost, which is studied in
[1]. In Fig. 3(b), when white node B receives a hello message
from root A, it compares the number of the messages received
from this edge, which is 1, with the edge cost 3. Since the
number of hello messages is less than the edge cost,a NOTYET
message is sent back to node A (Lines 10-14 in Algorithm 3).
The corresponding case, in Fig. 3(e), is that node b1, instead
of node B, receives a hello message from node A. Node b1

is marked as black, sends a MARK message back to A, but
B still does not find the shortest path and white. Meanwhile,
node C is marked as black in both cases because the cost
of edge (A, C) is 1. In the next iteration in G, in Fig. 3(c),

a hello message reaches node B again. Correspondingly, in
G’ a hello message reaches at node b2 (not node B) in Fig.
3(f). Node B will send a NOTYET message back to A again
in Algorithm 3. Meanwhile, node C reaches node B in both
cases, thus node B is marked as black and sets node C as its
parent, which implies that B found a shortest path to node A
through edge (B,C). Following the process, we can see that
Algorithm 2, working on network G, equals finding a DFS
tree on transformed graph G’ with a unified edge cost, which
was studied in [1], and will deliver correct results.

As to the complexity of the algorithm, we can see that the
total number of messages on the edges in G equal to the
total number of messages on the transformed graph G’ using
schemes in [1]. On the transformed graph G’, the number of
edges is the summation of all edge costs, C =

∑m
i=1 ci. The

number of newly added nodes is
∑m

i=1(ci − 1), thus the total
number of nodes in the transformed networks is (C-(m-n)).
Following the work from [1], we can see that the message
complexity and the time complexity of Algorithm 2 are both
O(C2 + (m− n)2).

C. Weighted Energy-Aware Routing in HSNs

In the above NEMO routing protocol, the cost of one Joule
energy consumption of an H-sensor is considered the same as
that of an L-sensor. However, an H-sensor usually has energy
supply than an L-sensor has. Thus, the cost of consuming one
Joule energy in an H-sensor should be modeled lower than that
in an L-sensor. To consider such a fact in the routing protocol
design and optimization, we study the Weighted Energy-Aware
Routing (WEAR) problem. We consider a modified objective
function by applying a discount factor α(0 < α < 1) for
energy consumption of H-sensors, i.e., we aim to find a path
that minimizes the following objective function:

min
P∈Π

{
∑
i∈P

eLi + α
∑
j∈P

eHj}

Correspondingly, there are four types of edges:
1) L-sensor to L-sensor edge:

EC = (Tx +Rx) = (2 · ϵelec + ϵamp · d2i,j)
2) L-sensor to H-sensor/BS:

EC = Tx + α ·Rx = (1 + α) · ϵelec + ϵamp · d2i,j
3) H-sensor/BS to L-sensor:

EC = α · Tx +Rx = (1 + α) · ϵelec + α · ϵamp · d2i,j
4) H-sensor/BS to H-sensor/BS:

EC = α · (Tx +Rx) = α · (2 · ϵelec + ϵamp · d2i,j)
NEMO can be easily modified for the WEAR problem. The

basic idea is that the energy consumption of each edge needs to
be updated, corresponding to the above formulas. One critical
question is to decide the types of edges on the paths because
different types of edges have different energy consumption. In
our solution, we find a sub-path pl from a source L-sensor l
to an H-sensor h, and another sub-path ph from h to BS. In
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the following theorem, we prove that the shortest (minimum
energy) path pl has only L-sensors as the intermediate nodes
between l and h.

Theorem 3: The minimum energy path from an L-sensor l
to an eligible H-sensor h only includes L-sensors. That is, this
path does not include any other H-sensors. 2

Proof: We use Fig. 4 to illustrate the proof. Assume that the
minimum energy path from l to h has not only L-sensors,
but also H-sensors as intermediate nodes. Let h’ be the first
intermediate H-sensor on the path (note that from l to h’ all
the intermediate nodes are L-sensors).

Denote the energy consumption of sub-path (l,h’), (h’,h),
and (h,BS) as ECX , ECY , and ECZ , respectively. Mean-
while, suppose the energy consumption of the shortest path
from H-sensor h’ to the BS is ECT . Since path (h’, BS)
is the minimum energy path from h’ to the BS, we have
ECT ≤ ECY +ECZ . Consequently, ECT +ECX ≤ ECX+
ECY +ECZ , which implies that path l→h’→BS has smaller
energy consumption than path l→ h → BS. This implies that
we can find another path l→h’→BS, which uses H-sensor h’
and has less energy consumption. Also, note that this path uses
all L-sensors between l and h’. Following the similar process,
we can always find a path with a smaller energy consumption
and without using any H-sensors between l to its eligible H-
sensor. Therefore, the shortest path from an L-sensor to its
eligible H-sensor only includes L-sensors.

Fig. 4. Illustration for Theorem 3

Based on the theorem, for the minimum energy path from an
L-sensor l to an eligible H-sensor h, only the last receiver is an
H-sensor. Hence, we need apply the discount factor α to the
receiving energy. From Lemma 1, we know that the minimum
energy consumption from l to h is 2d

√
ϵelecϵamp. With the

discount factor, the difference of the receiving energy at h is
(1−α)ϵelec. Hence, the minimum energy consumption from l
to h is 2d

√
ϵelecϵamp − (1−α)ϵelec. Using Lemma 1 in WEAR,

we select eligible H-sensors based on the following condition:

(α · ECh + 2d
√
ϵelecϵamp − (1− α)ϵelec) ≤ τ

The discount factor is applied for ECh, since ECh is the
energy consumption of H-sensors in path ph.

IV. PERFORMANCE EVALUATION

We evaluated the performance of the NEMO protocol exten-
sive simulations. Our simulations were implemented in LEDA
[16], a C++ based network simulation tool. All tests were
performed on a 1.0GHz Linux PC with 1G bytes of memory.
Both L-sensors and H-sensors were uniformly distributed in a
square playing field at 100×100 square units. One base station
was randomly deployed in the area. We ran simulations on
randomly generated network topologies with different numbers
of L-sensors, including 100, 200, 300, 400, 500, and 600.
Given the number of L-sensors, we define the network density

with the ratio between the number of H-sensors and that
of L-sensors. In the simulations, 3 different network ratios
were studied: 1

10 (sparse network), 1
4 (medium network), and

1
2 (dense network). Therefore, a total of 18 different network
models have been tested in the evaluation. For each network
model, 10 topologies were generated for tests. All figures in
this section are the average results of 10 network topologies.
The transmission range of an L-sensor is r = 25, and the
transmission range of an H-sensor is R = 50. We compared
the proposed NEMO protocol with two other routing protocols;
the routing protocol in [7] (denoted as HSR), and an optimal
solution (denoted as OPT), which is obtained by using a global
shortest path algorithm in the network.

Fig. 5 shows the results for sparse networks. In Fig. 5(a),
with both α = 1

4 and α = 1, we can see that OPT always
has the minimum energy consumption. NEMO has comparable
performance with OPT. Both are obviously better than HSR.
Meanwhile, note that when α = 1

4 (the WEAR problem),
the energy consumption, as expected, is less than the case
with α = 1. This is due to the energy consumption discount,
mentioned in Section III-C, on H-sensors. With the energy
consumption close to the optimal solution, NEMO has the
advantages over OPT in both message complexity and time
complexity, as shown in Figs. 5(b) and 5(c). To sum up, NEMO
achieves a good balance between small energy consumption
and low complexity.

As shown in Figs. 6 and 7, similar results hold for medium
and dense networks. This demonstrates that our NEMO routing
protocol has very good energy consumption performance, as
well as low message and time complexity for all kinds of
network topologies. Another observation is that the denser the
network, the less the energy consumption, as shown in Figs.
5(a), 6(a), and 7(a). The reason is that when the density is
higher, there are more H-sensors in the network, which helps
to find better paths for L-sensors. It is worth noting that we
also evaluated the performances with different transmission
ranges (when R=r, R=4r, etc), which cannot be listed here
due to the space limit. For these cases, we observed similar
trends, as shown in Figs. 5-7.

To sum up, our simulations demonstrated that the NEMO
protocol achieves similar energy consumption as the optimal
solution, while significantly reducing the message and time
complexity. Hence, the NEMO protocol is very suitable for
resource-limited sensor networks.

V. CONCLUSION

In this paper, we presented an efficient Near-Optimal routing
(NEMO) protocol for Heterogeneous Sensor Networks. We
proposed a new concept - eligible H-sensor, and it is used
to significantly reduce the routing overhead (including both
message and time complexity) of NEMO. We also obtained
theoretical results for choosing eligible H-sensors. Further-
more, we proposed a simple, yet effective distributed shortest
path algorithm, and obtained the time and message complexity
of the algorithms. We extensive simulations to evaluate the
performance of NEMO. Our simulation results show that the
NEMO protocol can find near-minimum energy routes (close to
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Fig. 5. Results for sparse networks (R=50, r=25)
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Fig. 6. Results for medium networks (R=50, r=25)
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Fig. 7. Results for dense networks (R=50, r=25)

the optimal solution) and has much smaller routing overhead
than the optimal solution.
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